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A general mathematical basis is developed for computation of the pulsed-gradient spin-echo signal atten-
uated due to restricted diffusion in multilayered structures (e.g., multiple slabs, cylindrical or spherical
shells). Individual layers are characterized by (different) diffusion coefficients and relaxation times, while
boundaries between adjacent layers are characterized by (different) permeabilities. Arbitrary temporal
profile of the applied magnetic field can be incorporated. The signal is represented in a compact matrix
form and the explicit analytical formulas for the elements of the underlying matrices are derived. The
implemented algorithm is faster and much more accurate than classical techniques such as Monte Carlo
simulations or numerical resolutions of the Bloch–Torrey equation. The algorithm can be applied for
studying restricted diffusion in biological systems which exhibit a multilayered structure such as com-
posite tissues, axons and living cells.
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1. Introduction

A pulsed-gradient spin-echo (PGSE) technique is a non-invasive
experimental tool for studying diffusive processes in mineral por-
ous media and biological systems [1–4]. The past decade is marked
by a significant increase in spatial resolution, image quality and
acquisition rapidity that resulted in numerous clinical applications
such as brain or lung imaging [5–10]. In turn, the progress in the-
oretical understanding of restricted diffusion in such complex sys-
tems is less spectacular. Although the theory is well established for
few simple confining shapes (such as slab, cylinder and sphere)
[11], its extension to heterogeneous media is essentially an open
problem. Several phenomenological formulas (e.g., bi-exponential
fit, stretched-exponential fit, etc.) are therefore used for fitting
and interpreting measured signals in biological systems [12–18].
Physical and geometrical interpretation of fitting parameters, as
well as the respective roles of various attenuation mechanisms
(bulk and surface relaxation, permeation through boundaries,
etc.), are still poorly understood in general.

We propose a general mathematical description of restricted
diffusion in multilayered structures (Fig. 1), in which the Laplace
operator eigenfunctions are known in a closed analytical form:

� multiple slabs separated by parallel planes (e.g., a model of
composite or multilayered tissues);
� multiple cylindrical shells (e.g., a model of axons); and
ll rights reserved.

u

� multiple spherical shells (e.g., a rough model of a living cell in
which layers represent a nucleus, a cytoplasm, and an extracel-
lular space).

Pulsed-gradient encoding of any temporal profile, individual
bulk relaxivity and diffusivity for each layer, different permeabili-
ties between adjacent layers, and exchange with an exterior space
are rigorously included in this treatment. An efficient, accurate and
rapid numerical tool for computing the signal attenuation is de-
signed and implemented in Matlab. Since most computations are
performed analytically, this matrix formalism significantly outper-
forms classical numerical methods such as Monte Carlo
simulations.

The paper is organized as follows. Section 2 describes the math-
ematical basis of the spectral approach to restricted diffusion in
multilayered structures. Although the formulas may look cumber-
some and sophisticated, their practical implementation is straight-
forward. After all, restricted diffusion in multilayered structures is
a complex phenomenon which needs an adequate description. In
Section 2.1, the Bloch–Torrey equation is formulated for multilay-
ered structures and its physical interpretation is recalled. Sec-
tion 2.2 introduces the Laplace operator eigenfunctions. In
Section 2.3, the computation of the Laplace operator eigenvalues
is detailed. Section 2.4 summarizes the main steps of the matrix
formalism. A practical implementation for multiple slabs, cylindri-
cal and spherical shells is explained in Section 2.5. In Section 3, a
practical use of the matrix formalism is illustrated by several
examples. In particular, the role of the permeability of intermedi-
ate boundaries is investigated. Appendices describe the explicit
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(a) (b)
Fig. 1. Two examples of multilayered structures: (a) multiple slabs (d = 1) and (b) multiple cylindrical shells (d = 2).
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formulas for the elements of the governing matrices. This is the key
point for the performance of the matrix formalism.
2. Mathematical basis

2.1. Bloch–Torrey equation

We consider a multilayered domain X = X1 [� � �[X‘, composed
of ‘ layers Xi ¼ fr 2 Rd : ri�1 < jrj < rig, with r0 < r1 <� � �< r‘ = R
(Fig. 1). Each layer Xi is characterized by diffusion coefficient Di

and relaxation time Ti (representing transverse spin-spin relaxa-
tion). The inner, outer and each intermediate boundary,
Ci ¼ fr 2 Rd : jrj ¼ rig (i = 0. . .‘), is characterized by permeability
Wi. For such a composite system, the classical Bloch–Torrey equa-
tion becomes:

@

@t
� DiDþ ixf ðtÞBðrÞ þ T�1

i

� �
miðr; tÞ ¼ 0 ðr 2 Xi; i ¼ 1 . . . ‘Þ;

Di
@

@n
miðr; tÞ ¼ �Diþ1

@

@n
miþ1ðr; tÞ ðr 2 Ci; i ¼ 1 . . . ‘� 1Þ;

Di
@

@n
miðr; tÞ ¼Wi½miþ1ðr; tÞ �miðr; tÞ� ðr 2 Ci; i ¼ 1 . . . ‘� 1Þ;

D‘

@

@n
m‘ðr; tÞ ¼ �W ‘m‘ðr; tÞ ðr 2 C‘Þ;

D1
@

@n
m1ðr; tÞ ¼ �W0m1ðr; tÞ ðr 2 C0Þ;

ð1Þ

where mi(r,t) is the transverse magnetization inside the ith layer,
D ¼ @2=@x2

1 þ � � � þ @
2=@x2

d is the d-dimensional Laplace operator act-
ing on r = (x1,. . .,xd),@/@n is the normal derivative on the boundary
pointing to the exterior of the domain, and x is the Larmor fre-
quency associated with an applied magnetic field of a given (dimen-
sionless) temporal profile f(t) and of spatial variation B(r).

The first equation states that the time evolution of the magne-
tization is caused by

� local random displacements of the spin-bearing particles, i.e.,
diffusion which is governed by the Laplace operator,
� encoding through the applied magnetic field, and
� bulk relaxations.

The second equation describes the conservation of the flux of
magnetization between adjacent layers (the sign minus accounts
for the opposite directions of two normal derivatives at the inter-
mediate boundary Ci). The third equation accounts for the transfer
properties (permeabilities Wi) of intermediate boundaries. It states
that the diffusive flux is created by the drop in magnetization be-
tween two layers. For biological samples, typical water permeabil-
ities are in the order of 10�5 m/s (e.g., for axons [19,20]). Finally,
the last two equations describe the flux conservation at the outer
and inner boundaries C‘ and C0, respectively. If there is no inner
boundary (Fig. 1b), the last equation is replaced by the condition
of a regularity of m(r,t) at the origin.

The above mathematical description is approximate. The under-
lying assumptions are:

� All the intermediate boundaries are infinitely thin. When such
an approximation is not adequate, the frontier between two lay-
ers (e.g., a cellular membrane) can be modeled itself as an inter-
mediate layer, with an effective diffusion coefficient and
appropriate relaxation time.
� Although surface relaxation is formally neglected, it can be eas-

ily taken into account. For the outer and inner boundaries, the
transport coefficients W‘ and W0 represent the losses of the
spin-bearing particles which leave the multilayered structure.
But the very same constants W‘ and W0 may also account for
surface relaxation on the outer and inner boundaries. If surface
relaxation at intermediate boundaries is also relevant, these
infinitely thin boundaries can be replaced by additional inter-
mediate layers for which surface relaxation can be effectively
incorporated through the corresponding bulk relaxation times.
� The third equation relates the diffusive flux to the drop of mag-

netization between two layers. This is an effective model for
describing transfer properties of a membrane. Another model
relates the magnetizations at the edges of two layers by a linear
relation, namely, mi(r,t) = wimi+1(r,t) (as r 2Ci), with a dimen-
sionless constant wi. The approach we present can be easily
adapted to this model. At the same time, it is known that cellu-
lar membranes transfer species via different mechanisms (e.g.,
active transfer of some macromolecules [21,22]) which may
result in more sophisticated equations. This paper is focused
only on linear boundary conditions in Eq. (1).
� The Brownian dynamics of the spin-bearing particles is not

always valid for biological systems. For instance, the dynamics
of proteins and other macromolecules inside living cells is often
anomalous [23–26]. Anomalous diffusion or other intricate
dynamics are beyond the scope of the paper.

In what follows, we assume that a PGSE experiment is accu-
rately described by Eq. (1).

2.2. Laplace operator eigenfunctions

A solution of the Bloch–Torrey Eq. (1) can be written in terms of
the Laplace operator eigenfunctions [11,27,28]. For multilayered
structures, each eigenfunction u(r) satisfies the following
equations:
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DiDuiðrÞ þ kuiðrÞ ¼ 0 ðr 2 Xi; i ¼ 1 . . . ‘Þ; ð2Þ

Di
@

@n
uiðrÞ ¼ �Diþ1

@

@n
uiþ1ðrÞ ðr 2 Ci; i ¼ 1 . . . ‘� 1Þ; ð3Þ

Di
@

@n
uiðrÞ ¼Wi½uiþ1ðrÞ � uiðrÞ� ðr 2 Ci; i ¼ 1 . . . ‘� 1Þ; ð4Þ

D‘

@

@n
u‘ðrÞ ¼ �W ‘u‘ðrÞ ðr 2 C‘Þ; ð5Þ

D1
@

@n
u1ðrÞ ¼ �W0u1ðrÞ ðr 2 C0Þ; ð6Þ

where k is the associated eigenvalue (in units s�1), and ui(r) is the
restriction of the eigenfunction u(r) on the ith layer Xi. When there
is no inner boundary, the last equation is replaced by the condition
of regularity of u(r) at the origin.

In spherical coordinates, the Laplace operator is

D ¼ 1
rd�1

@

@r
rd�1 @

@r

� �
þ Dang

r2 ; ð7Þ

where Dang is the Laplace–Beltrami operator in angular coordinates
[29]. For rotation-invariant domains, the radial and angular depen-
dences of a Laplace operator eigenfunction are factored,
u(r) = v(r)w(h,. . .), and the eigenvalue Eq. (2) splits in two separate
equations

Dangwðh; . . .Þ þ mwðh; . . .Þ ¼ 0; ð8Þ
ðrd�1v 0Þ0 þ ðk=DiÞrd�1 � mrd�3� �

v ¼ 0 ðri < r < riþ1Þ; ð9Þ

where the prime denotes the derivative with respect to the radial
coordinate r. Since the normal derivative @/@n is simply ±@/@r,
Eqs. (3) and (4) at the intermediate boundaries can be conveniently
written as

Div 0iðriÞ þWiv iðriÞ ¼Wiv iþ1ðriÞ;
Wiv iðriÞ ¼Wiv iþ1ðriÞ � Diþ1v 0iþ1ðriÞ;

ð10Þ

where vi(r) is the restriction of v(r) on the interval (ri,ri+1).
2.3. Computation of the eigenvalues

A general form of a solution of Eq. (9) is a linear combination of
its two independent solutions that can be denoted J(r) and Y(r) (see
Section 2.5):

v iðrÞ ¼ biJ r
ffiffiffiffiffiffiffiffiffiffi
k=Di

p� �
þ ciY r

ffiffiffiffiffiffiffiffiffiffi
k=Di

p� �
: ð11Þ

The 2‘ + 1 unknowns (‘ pairs {bi, ci} and k) can be found by using
2(‘ � 1) Eqs. (3) and (4) at ‘ � 1 intermediate boundaries, two
Eqs. (5) and (6) at the outer and inner boundaries, and one normal-
ization condition for the eigenfunction.

Denoting qi ¼ ri=
ffiffiffiffiffi
Di
p

; ~qi ¼ ri=
ffiffiffiffiffiffiffiffiffi
Diþ1

p
, and a ¼

ffiffiffi
k
p

, one can write
the boundary conditions (10) as matrix relations for the unknown
coefficients bi,ci:

a
ffiffiffiffiffi
Di
p

J0ðaqiÞþWiJðaqiÞ a
ffiffiffiffiffi
Di
p

Y 0ðaqiÞþWiYðaqiÞ
WiJðaqiÞ WiYðaqiÞ

 !
bi

ci

 !

¼
WiJða~qiÞ WiYða~qiÞ

WiJða~qiÞ�a
ffiffiffiffiffiffiffiffiffi
Diþ1

p
J0ða~qiÞ WiYða~qiÞ�a

ffiffiffiffiffiffiffiffiffi
Diþ1

p
Y 0ða~qiÞ

 !
biþ1

ciþ1

 !
;

from which

biþ1

ciþ1

� �
¼ AiðaÞ

bi

ci

� �
; ð12Þ

where the elements of the 2 � 2 matrix Ai(a) are
½AiðaÞ�11 ¼ Q iðaÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Diþ1

p
J0ðaqiÞYða~qiÞ þ JðaqiÞY

0ða~qiÞ
h

þW�1
i

ffiffiffiffiffi
Di

p
aJ0ðaqiÞY

0ða~qiÞ
i
;

AiðaÞ½ �12 ¼ Q iðaÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Diþ1

p
Y 0ðaqiÞYða~qiÞ þ YðaqiÞY

0ða~qiÞ
h

þW�1
i

ffiffiffiffiffi
Di

p
aY 0ðaqiÞY

0ða~qiÞ
i
;

AiðaÞ½ �21 ¼ Q iðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Diþ1

p
J0ðaqiÞJða~qiÞ � JðaqiÞJ

0ða~qiÞ
h

�W�1
i

ffiffiffiffiffi
Di

p
aJ0ðaqiÞJ

0ða~qiÞ
i
;

AiðaÞ½ �22 ¼ Q iðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di=Diþ1

p
Y 0ðaqiÞJða~qiÞ � YðaqiÞJ

0ða~qiÞ
h

�W�1
i

ffiffiffiffiffi
Di

p
aY 0ðaqiÞJ

0ða~qiÞ
i
;

with

QiðaÞ ¼
1

Jða~qiÞY 0ða~qiÞ � J0ða~qiÞYða~qiÞ
: ð13Þ

A repeated application of Eq. (12) allows one to express the
coefficients bi, ci in terms of b1, c1:

bi

ci

� �
¼

Yi�1

j¼1

AjðaÞ
" #

b1

c1

� �
: ð14Þ

The inner boundary condition (6) relates the coefficients b1 and
c1:

b1ðaÞ a
ffiffiffiffiffiffi
D1

p
J0ða~q0Þ �W0Jða~q0Þ

h i
þ c1ðaÞ a

ffiffiffiffiffiffi
D1

p
Y 0ða~q0Þ �W0Yða~q0Þ

h i
¼ 0; ð15Þ

whose solution is

b1ðaÞ ¼ a
ffiffiffiffiffiffi
D1

p
Y 0ða~q0Þ �W0Yða~q0Þ;

c1ðaÞ ¼ �a
ffiffiffiffiffiffi
D1

p
J0ða~q0Þ þW0Jða~q0Þ:

ð16Þ

When there is no inner boundary, Eq. (15) is replaced by the
condition of regularity of a solution at the origin, yielding b1 = 1
and c1 = 0 (see below). Finally, in the special case of W0 =1, Eq.
(15) is replaced by b1ðaÞJða~q0Þ þ c1ðaÞYða~q0Þ ¼ 0, whose solution is

b1ðaÞ ¼ �Yða~q0Þ;
c1ðaÞ ¼ Jða~q0Þ:

Eqs. (14) and (16) express all the coefficients bi and ci in terms of
a. The last unknown parameter, a, can be found from Eq. (5) for the
outer boundary condition which implies

FðaÞ ¼ b‘ðaÞ a
ffiffiffiffiffi
D‘

p
J0ðaq‘Þ þW ‘Jðaq‘Þ

h i
þ c‘ðaÞ a

ffiffiffiffiffi
D‘

p
Y 0ðaq‘Þ þW ‘Yðaq‘Þ

h i
¼ 0: ð17Þ

In the special case of W‘ =1, the modified equation is used:

FðaÞ ¼ b‘ðaÞJðaq‘Þ þ c‘ðaÞYðaq‘Þ ¼ 0:

As discussed below, these equations have an infinite set of solu-
tions. Each solution a determines an eigenvalue k = a2, all the coef-
ficients bi and ci and thus the radial dependence v(r) of the
associated eigenfunction u(r). Consequently, computation of the
Laplace operator eigenbasis in multilayered structures is fully re-
duced to solving Eq. (17). This is a drastic simplification of the
problem that allows one to study in depth restricted diffusion in
multilayered structures. In what follows, we shall illustrate the
use of this equation by several examples.

Since the elements of the matrix Ai(a) contain W�1
i , the perme-

abilities Wi of the intermediate boundaries should not be 0. How-
ever, if certain Wi was 0, there would no exchange between the
layers i and i + 1, so that the multilayered structure would be



Fig. 2. Example of an effective temporal profile f(t): two rectangular gradient pulses
of duration d separated by the period D. The second gradient pulse has the opposite
sign due to the inverting 180� rf pulse. The total echo time is t = 2s, and t1 is the
delay between the 90� rf pulse and the first gradient pulse. Throughtout the paper,
we set t1 = 0 and s = D = t/2 in order to avoid confusion with notation for the Laplace
operator, although different values for s and D can be directly used in the matrix
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decomposed into isolated structures. In this case, the computation
could be realized for each of these isolated structures separately,
while the macroscopic signal would be simply a linear superposi-
tion of the signals from each structure. Without loss of generality,
one can assume that the permeabilities of the intermediate bound-
aries are strictly positive. In turn, the permeabilities W0 and W‘ of
the inner and outer boundaries can be 0 (reflecting boundary
conditions).

2.4. Matrix formalism

The idea of using spectral decompositions for studying re-
stricted diffusion in an inhomogeneous magnetic field goes back
to Robertson [30]. A compact matrix representation of the macro-
scopic signal was progressively developed in a series of publica-
tions [31–36,11] (see the review [11] and pedagogical papers
[27,28] for a historical survey, comparison between matrix formal-
isms and technical details). A spectral approach was successfully
applied for theoretical and numerical studies of restricted diffusion
for various confining domains and magnetic field profiles [37–41].
In this section, we briefly recall the main steps and advantages of
the matrix formalism from Refs. [11,27,28].

A solution of the Bloch–Torrey Eq. (1) can be projected onto the
complete basis of the Laplace operator eigenfunctions defined
through Eqs. (2)–(6). The eigenvalues km, indexed by a positive
integer m, are known to be positive, km P 0, while the eigenfunc-
tions um(r) are orthonormal,Z

X
dr u�mðrÞum0 ðrÞ ¼ dm;m0 ; ð18Þ

where the asterisk denotes the complex conjugate, and
dm;m0 ¼ 1 for m ¼ m0; and 0 otherwise.

In this basis, the Laplace operator is represented by a diagonal
infinite-dimensional matrix K formed by the eigenvalues
km;Km;m0 ¼ dm;m0km, while the magnetic field in Eq. (1) is repre-
sented by another matrix B whose elements are

Bm;m0 ¼
Z

X
dr u�mðrÞBðrÞum0 ðrÞ:

In most practical applications, the magnetic field is induced
with a linear gradient in a given direction e and of strength g so
that

Bm;m0 ¼
Z

X
dr u�mðrÞum0 ðrÞðe � rÞ=L; ð19Þ

where (e � r) is the scalar product between the position r and the
unit vector e (i.e., the projection of r onto direction e), and L is a
length scale which is introduced to make the matrix B dimension-
less (e.g., L may be the size R of the multilayered structure). In this
case, the Larmor frequency is x = cg L,c being the gyromagnetic ra-
tio of the nuclei.

The initial magnetization density q(r) and the sampling func-
tion ~qðrÞ of a receiving coil are represented by the infinite-dimen-
sional vectors U and eU , respectively:

Um ¼ Vol1=2
Z

X
dr u�mðrÞqðrÞ;

eUm ¼ Vol�1=2
Z

X
dr umðrÞ~qðrÞ;

Vol being the volume of the multilayered structure X. In practice,
both functions q(r) and ~qðrÞ are often constant, q(r) = 1/Vol and
~qðrÞ ¼ 1 so that

Um ¼ eU�m ¼ Vol�1=2
Z

X
dr u�mðrÞ: ð20Þ
The macroscopic signal acquired at observation time t is propor-
tional to the integral of the magnetization m(r,t), multiplied by the
sampling function ~qðrÞ, over the confining domain X. When the
magnetic field does not vary in time (f(t) = 1), the signal attenua-
tion (i.e., the signal normalized by the reference signal without
magnetic field) can be written in a compact matrix form of a scalar
product [11,27,28]

E ¼ U exp½�ðKþ ixBþBrÞt�eU� �
; ð21Þ

where the matrix Br accounts for bulk relaxation in different layers:

Br ¼
X‘
i¼1

T�1
i Bi; Bi

m;m0 ¼
Z

Xi

dr u�mðrÞum0 ðrÞ: ð22Þ

If the temporal profile f(t) of the magnetic field is a piecewise
constant function, i.e., f(t) = fk on (tk�1,tk), k = 1. . .K, with t0 = 0
and tK = t, the signal attenuation is combined from the evolution
matrices for each time interval (tk�1, tk),

E ¼ U
YK

k¼1

exp �ðKþ ixfkBþBrÞðtk � tk�1Þ½ �
" #eU !

: ð23Þ

This formula is exact, no approximation was used. For instance,
the signal attenuation in a rectangular bipolar gradient profile
shown in Fig. 2 (with t1 = 0 and s = D = t/2) is

E ¼ U e�ðKþixBþBrÞde�ðKþB
rÞðt=2�dÞe�ðK�ixBþBrÞde�ðKþB

rÞðt=2�dÞ� �eU� �
:

ð24Þ

Since any temporal profile f(t) can be approximated by a piece-
wise constant function, the matrix formalism allows one to com-
pute the signal in a very general situation.

For a numerical implementation, the infinite-dimensional
matrices and vectors have to be truncated to a finite size M. For this
purpose, the eigenvalues km are sorted in an ascending order, and
one chooses the first M eigenvalues and the corresponding eigen-
functions. A numerical algorithm consists in the following steps:

(1) compute the first M eigenvalues and corresponding eigen-
functions of the Laplace operator in a given confining
domain;

(2) construct the matrices B and Br and the vectors U and eU for
given magnetic field B(r), initial density q(r) and sampling
function ~qðrÞ; and

(3) approximate a given temporal profile f(t) and compute the
signal attenuation by matrix multiplication in Eq. (23).

For a general confining domain, a numerical computation of
the Laplace operator eigenfunctions is often the most time-
consuming step. In turn, the first step of the algorithm is skipped
formalism.
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for multilayered structures, because the eigenfunctions are already
known. The main contribution of the paper is the derivation of the
explicit analytical formulas for the elements of the matrices B;Br

and the vectors U; eU . These formulas help to perform the second
step of the algorithm in a very efficient way. In addition, analytical
results eliminate numerical integrations which otherwise could
degrade the accuracy of computation. Thanks to the explicit formu-
las, numerical errors which come only from matrix truncation and
matrix products, can be made negligibly small. Finally, an explicit
construction of these matrices is very rapid (see Appendix B for an
explicit example of the matrices K and B). In summary, analytical
computation of the governing matrices for multilayered structures
makes the matrix formalism to be efficient, rapid and accurate
numerical method which outperforms classical techniques such
as Monte Carlo simulations or finite difference and finite element
resolution of the Bloch–Torrey equation.

2.5. Three types of multilayered structures

2.5.1. Slab layers
Diffusion in a slab between two parallel planes is decomposed

in two independent processes, one is orthogonal and the other is
parallel to the planes. Since the latter is not restricted, the signal
attenuation due to this process is well known [42,43]. One can
therefore focus on the orthogonal one-dimensional diffusion which
is mathematically equivalent to diffusion on the interval X = [r0,R].
In this case, there is no angular part (m = 0) and the ‘‘radial” eigen-
value Eq. (9) is simply v00 + m = 0. Two independent solutions of this
equation are

JðzÞ ¼ cosðzÞ; YðzÞ ¼ sinðzÞ;

so that Qi(a) = 1 according to Eq. (13).
When r0 = 0, Eq. (16) yields b1ðaÞ ¼ a

ffiffiffiffiffiffi
D1
p

and c1(a) = W0 for any
permeability W0 <1. In the special case of a perfectly absorbing
inner boundary (W0 =1), Eq. (16) are not valid, and one can use
b1 = 0 and c1 = 1.

For the simplest case of a single layer with reflecting boundaries
at r = 0 (W0 = 0) and r = R (W1 = 0), Eq. (17) is reduced to
F(a) = �a2D1sin(aq1) = 0, which has an infinite set of positive roots
pk/q1, with k ranging from 0 to infinity. The eigenvalues and eigen-
functions are p2k2D1/R2 and cos(pk r/R), as expected for the inter-
val with reflecting endpoints.

A general situation is somewhat similar to the above example.
In fact, Eq. (17) has an infinite set of the positive roots which can
be denoted as a0k, with k ranging from 0 to infinity (we write the
index 0k instead of k for convenience, see below). These roots
determine the eigenvalues k0k ¼ a2

0k and the eigenfunctions u0k(r)
of the Laplace operator

u0kðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

R� r0

s
b0kv0kðrÞ;

where the normalization constants b0k are set to fulfill Eq. (18), i.e.

1 ¼
Z R

r0

dr u2
0kðrÞ ¼ 2b2

0k
1

R� r0

Z R

r0

drv2
0kðrÞ:

The elements of the vector U and of the matrices B;Br from Eqs.
(20), (19), (22) are expressed in terms of several integrals which
are given explicitly in Appendix A:

b0k ¼ ð2I0kÞ�1=2
;

U0k ¼
ffiffiffi
2
p

b0kJk;

Bi
0k;0k0 ¼ 2b0kb0k0 I0kk0 ;i;

B0k;0k0 ¼ 2b0kb0k0K0k;0k0 :

ð25Þ
All the quantities I0k; Jk; Inkk0 ;i and K0k;0k0 are fully and explicitly
expressed in terms of the positive roots a0k of Eq. (17). A numerical
computation is therefore reduced to finding these roots and apply-
ing explicit formulas to construct the matrices B;Br and the vector
U. Practical applications of the matrix formalism will be illustrated
in Section 3.

2.5.2. Cylindrical layers
A diffusive process inside a cylinder has two independent com-

ponents: one-dimensional unrestricted diffusion along the cylinder
axis and two-dimensional restricted diffusion in the perpendicular
plane. The latter is mathematically equivalent to restricted diffu-
sion in a disk. In this case, Dang = @2/@h2, and Eq. (8) has infinitely
many solutions einh and e�inh, indexed by an integer n = 0,1,2, . . . ,
with mn = n2. The radial eigenvalue Eq. (9) is the Bessel equation
with two independent solutions

JðzÞ ¼ JnðzÞ; YðzÞ ¼ YnðzÞ;

which are Bessel functions of the first and second kind. The function
Qi(a) in Eq. (13) is QiðaÞ ¼ pa~qi=2 according to the Abel’s identity:

JnðzÞY 0nðzÞ � YnðzÞJ0nðzÞ ¼
2
pz

:

If r0 = 0, there is no inner boundary, and Eq. (15) is replaced by
the condition of regularity of a solution at the origin. Given that
Bessel functions Yn(z) diverge at z = 0, one imposes c1 = 0, while
b1 can be set to 1.

For any fixed n, Eq. (17) has an infinite set of positive solutions
which can be denoted as ank (k = 0,1,2,. . .). The double index nk is
used instead of the single index m for convenience. The solutions
ank determine the eigenvalues knk ¼ a2

nk and the eigenfunctions
unk(r,h) of the Laplace operator:

unkðr; hÞ ¼
enbnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðR2 � r2
0Þ

q vnkðrÞ cos nh;

where en ¼
ffiffiffi
2
p

for n > 0, and e0 = 1. The normalization constants bnk

are set to fulfill Eq. (18). The explicit formulas from Appendix A
yield

bnk ¼ ð2InkÞ�1=2
;

Unk ¼ 2dn;0b0kJk;

Bi
nk;n0k0 ¼ 2dn;n0bnkbnk0 Inkk0 ;i;

Bnk;n0k0 ¼ dn;n0�1ð1þ dn;0 þ dn0 ;0Þ1=2bnkbn0k0Knk;n0k0 :

ð26Þ

Since all these quantities are explicitly expressed in terms of
ank, computation is reduced to finding the positive roots of Eq.
(17). It is worth stressing again that the elements of the matrices
B;Bi are indexed by two double indices nk and n

0
k
0

(e.g., Bnk;n0k0

is a matrix, not a tensor of the fourth rank).

2.5.3. Spherical layers
In three dimensions, the eigenfunctions of the ‘‘angular” La-

place–Beltrami operator Dang are the spherical harmonics, with
the associate eigenvalues mn = n(n + 1) (n = 0,1,2,. . .). Eq. (9) has
two independent solutions known as spherical Bessel functions
of the first and second kind,

JðzÞ ¼ jnðzÞ; YðzÞ ¼ ynðzÞ;

where jnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2zÞ

p
Jnþ1=2ðzÞ and ynðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2zÞ

p
Ynþ1=2ðzÞ. The

Abel’s identity

jnðzÞy0nðzÞ � ynðzÞj
0
nðzÞ ¼

1
z2

yields QiðaÞ ¼ a2 ~q2
i in Eq. (13).
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If r0 = 0, there is no inner boundary, and Eq. (15) is replaced by
the condition of regularity of a solution at the origin. Given that
spherical Bessel functions yn(z) diverge at z = 0, one imposes
c1 = 0, while b1 can be set to 1.

As in the case of cylindrical layers, Eq. (17) has an infinite set of
positive solutions denoted as ank (k = 0,1,2,. . .). The eigenvalues
knk ¼ a2

nk and the eigenfunctions are

unkðr; h;uÞ ¼
bnk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðR3 � r3
0Þ

q vnkðrÞPnðcos hÞeilu; ð27Þ

where Pn(z) is the Legendre polynomial. Since the magnetic field is
independent of the angular variable u, the third index l is omitted.
The normalization constants bnk are set to fulfill Eq. (18). The expli-
cit formulas from Appendix A yield

bnk ¼ ð2InkÞ�1=2
;

Unk ¼ dn;0

ffiffiffi
6
p

b0kJk;

Bi
nk;n0k0 ¼ 2dn;n0bnkbnk0 Inkk0 ;i;

Bnk;n0k0 ¼ dn;n0�1
nþ n0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ 1Þð2n0 þ 1Þ
p bnkbn0k0Knk;n0k0 :

ð28Þ
2.6. Practical implementation

Explicit formulas for the elements of the governing matrices K,
B, and Bi are the key point for efficient numerical computation. An
a priori sophisticated computation of the signal attenuation due to
magnetic field encoding, relaxation and diffusion in multilayered
structures is reduced to finding roots of explicit functions in Eq.
(17). Once these roots are found numerically, the construction of
the governing matrices and the computation of the signal attenua-
tion are straightforward.
2.6.1. Finding roots
Although finding roots of explicit functions is a classical prob-

lem in numerical analysis, several comments are in order. Since
the governing matrices have to be truncated to a finite size, it is
convenient to set the upper limit amax and to search for all the
roots of Eq. (17) in the interval (0,amax). An appropriate choice
for amax (or the truncation size) will be discussed in the next sub-
section. In two and three dimensions, the roots of Eq. (17) should
be found for different values of the index n = 0,1,2,. . .. Since the
smallest strictly positive root an0 of Eq. (17) increases with n, the
searching procedure is stopped at some nmax for which Eq. (17)
does not have roots on the interval (0, amax).

The main numerical difficulty is that the number of roots on the
interval (0, amax), as well as the distances between roots, are un-
known. Classical methods (e.g., the bisection method) can find a
single root on some interval [a,b] 	 (0,amax). How can one choose
the interval [a,b] so that it contains at most one root? For a sin-
gle-layer structure, the answer is simple. For instance, in the case
of the unit disk with Neumann boundary condition, Eq. (17) is re-
duced to FðaÞ ¼ a2D1J0nðaÞ ¼ 0, and the distance between any two
roots of this equation is greater than 1. One can therefore split
the interval (0,amax) in subintervals (0,1), (1,2),. . . so that each of
them contains at most one root. Searching for roots on each subin-
terval by classical methods yields all the roots on the interval
(0,amax).

In the general case, however, the computation is more difficult
because two roots of Eq. (17) can be close to each other, and the
minimal distance between roots depends on the physical parame-
ters. This difficulty is illustrated on Fig. 3 which shows the function
F(a) from Eq. (17) for two adjacent intervals of length r, with
D1 = D2 = D, and W0 = W2 = 0 (Neumann boundary condition at
both endpoints):

FðaÞ ¼ a3D3=2

W1
sin2ðar=

ffiffiffiffi
D
p
Þ �W1

sinð2ar=
ffiffiffiffi
D
p
Þ

a
ffiffiffiffi
D
p

" #
: ð29Þ

When the permeability W1 between two intervals approaches 0,
the second term vanishes, and the positive roots of the function
F(a) approach pk

ffiffiffiffi
D
p

=r (k = 0,1,2,. . .), as in the case of two discon-
nected intervals of length r. A numerical computation of these
roots is in general a difficult task.

In practice, the roots of F(a) can be found in the same way as for
the unit disk, namely, by splitting the interval (0,amax) into many
small subintervals: (0, e), (e, 2e), etc. On one hand, the length e
should be small enough to ensure that each subinterval contains
no more than one root. On the other hand, larger e leads to faster
computation. The simplest practical scheme for choosing the
length e is a visual estimation of e by plotting the function F(a)
and looking at the minimal distance between its roots. An algo-
rithm for an automated choice of the optimal length e is in progress
and will be published elsewhere.

2.6.2. Choice of numerical parameters
The choice of numerical parameters is a compromise between

accuracy and rapidity of the algorithm. The central numerical
parameter of the matrix formalism is the truncation size M of the
governing matrices or, equivalently, the upper limit amax. In math-
ematical terms, the truncation is accurate when the matrices B and
Br in Eq. (21), representing ‘‘perturbations” of the Laplace operator
in the Bloch–Torrey equation, are ‘‘small” in comparison to the ma-
trix K. In particular, stronger gradients (larger x) would require
larger matrices. For simple domains (e.g., the unit sphere), matrices
of size 10 � 10 or 20 � 20 are often enough for accurate computa-
tions (see Appendix B). In multilayered structures, the presence of
various time and length scales may require larger matrices. For all
the computations in this paper, the truncation to the size
100 � 100 was enough to get very accurate results. Although it is
difficult to provide a general criterion for the truncation size, a sim-
ple rule-of-thumb can be suggested. As the macroscopic signal
must not depend on the choice of numerical parameters, one can
check whether two signals computed with the matrices of different
truncation sizes are close enough.

In order to illustrate the rapidity and accuracy of the matrix for-
malism, we consider restricted diffusion in a cylindrical bilayer
structure, with r1 = 2.5 lm, r2 = 5 lm, D1 = 2 � 10�10 m2/s,
D2 = 2 � 10�9 m2/s, W0 = W2 = 0, W1 = 10�5 m/s, t = 100 ms and
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g = 200 mT/m (the choice of these values will be explained in Sec-
tion 3). The signal attenuation was computed in MATLAB on a
home laptop (Intel Core Duo at 2.5 GHz, RAM 4 GB, a 32 bit operat-
ing system) using the matrices with different truncation sizes M.
The computation with M = 200 was considered as the ‘‘exact” ref-
erence, to which the computations with M varying from 10 to
100 were compared with. The following empirical relations were
found: Err 
 0.68M�2.81, TM 
 4.5 � 10�3M1.5 and TS 
 4.6 �
10�7M2.73, where Err is the relative error between the approximate
and reference signals, TM is the CPU time (in seconds) for construct-
ing all governing matrices, and TS is the CPU time (in seconds) for
computing the signal attenuation. Even for the truncation size
M = 10, the relative error is less than 0.1% (which is comparable
to the best available experimental accuracy), while its computation
requires less than one second of CPU time on a home laptop. Such
performances are unattainable for classical numerical techniques.
It is worth stressing however, that these performances strongly de-
pend on the problem at hand so that the above empirical relations
may change for other examples. For instance, computations for
one-dimensional systems are much faster. In turn, the presence
of many layers would slow down the computation, while small
permeabilities or large differences in diffusion coefficients would
require larger matrices.
3. Numerical results

For illustrative purposes, the spin-echo signal attenuation was
computed for several examples by using the matrix formalism
and sometimes by Monte Carlo simulations. The following typical
values for physical parameters were used: D = 2 � 10�9 m2/s for
the free diffusion coefficient of water molecules at ambient tem-
perature, R = 5 lm as the outer radius, and c = 2.675 � 108 rad T�1

s�1 for the gyromagnetic ratio of protons. The gradient intensity
g and observation time t were varied in large ranges. The corre-
sponding b-value of the bipolar gradient profile (shown in Fig. 2)
was b = c2g2d2(t/2 � d/3). The focus was on cylindrical bilayer
structures with Neumann boundary condition at the outer
boundary.
1 For interpretation of color in Figs. 3–8, the reader is referred to the web version of
this article.
3.1. The role of the intermediate permeability

The role of permeable boundaries in diffusion-weighted exper-
iments was studied by many authors [44–54]. In their seminal pa-
per, Brownstein and Tarr used the spectral approach in order to
investigate the signal attenuation due restricted diffusion inside
a sphere subject to surface relaxation, which is also equivalent to
one-way permeation of the spin-bearing particles outside the
sphere [44]. Tanner considered diffusion between parallel semi-
permeable barriers and revealed the dependence of the time-
dependent diffusion coefficient on the permeability [45]. Andrasko
and later Kuchel et al. measured the water permeability of human
erythrocytes by using a PGSE technique [46,47]. Barzykin et al.
studied two-way diffusive exchange between a sphere and an out-
er space [48,49]. In the framework of the narrow-pulse approxima-
tion (see Section 3.4), Kuchel and Durrant considered restricted
diffusion inside two and four slabs separately by permeable mem-
branes [50]. A simplified pore-to-pore hopping model for the two-
phase diffusion problem was developed by Jiang et al. for the anal-
ysis of the pulsed-gradient spin-echo (PGSE) attenuation of water
diffusion in the condensed cell suspension systems [51]. In this
model, the two phases inside and outside the cells are treated as
two different kinds of pores, and the spin-bearing molecules per-
form hopping diffusion between them. Sen derived corrections
due to permeability to the time-dependent diffusion coefficient
in the short-time limit [52,53]. Kezele et al. examined the signal
attenuation in spherical cells with semi-permeable cellular and nu-
clear membranes [54]. They built an analytic model that could ex-
plain cell characteristic sizes, including the nuclear size, as well as
the cell-membrane permeability, the features that are suggested to
be related to different tissue pathologies.

In order to illustrate the use of the matrix formalism, we con-
sider a bilayer cylindrical structure of radii r1 = R/2 and r2 = R, with
equal diffusion coefficients D1 = D2 = D, t = 100 ms, d = t/2 and three
values of the permeability W1 of the intermediate boundary:
W1 =1 (fully permeable boundary), W1 = 10�5 m/s (typical water
permeability for axons [19,20]), and W1 = 10�7 m/s (almost imper-
meable boundary). The gradient strength g was varied between 0
and 200 mT/m.

The diffusion length
ffiffiffiffiffiffi
Dt
p

� 14 lm is much larger than the size
of the bilayer system meaning the long-time or motional averaging
regime [11]. In this regime, the Gaussian phase approximation is
expected to be applicable, and the signal would decay exponen-
tially with the b-value, E(b) � exp[ � ADC b]. At the same time,
the signal attenuation in the long-time regime is described as

E � exp �f�1
c2g2L4

D

Z t

0
dt0f 2ðt0Þ

" #
; ð30Þ

where L is the size of the system, and f�1 is the geometry-depen-
dent constant [11]. For a cylinder of radius L, Neuman found this
constant to be 7/96 (there is a misprint in Neuman’s paper: his con-
stant 7/296 should read as 7/96) [55]. For the bipolar gradient pro-
file shown on Fig. 2, one has b = c2g2d2(t/2 � d/3) and the integral in
Eq. (30) is simply 2d so that the apparent diffusion coefficient (ADC)
can be approximated as

ADC � 2f�1L4

Ddðt=2� d=3Þ : ð31Þ

For the infinite permeability W1, the bilayer system is simply a
cylinder of radius L = R, for which ADC � 2.7 � 10�11 m2/s according
to Eq. (31). The signal attenuation is indeed exponential, as illus-
trated on Fig. 4 by blue1 dashed line.

In the opposite limit of zero (or very small) permeability W1, the
bilayer system is decomposed in two isolated subdomains: a cylin-
der of radius R/2 and a cylindrical shell of radii R/2 and R. As pre-
viously, the monoexponential signal attenuations Ei and Eo are
expected for both subdomains, as shown by two black dotted lines
on Fig. 4. The corresponding ADCs are 1.7 � 10�12 m2/s and
5 � 10�11 m2/s (the second value is less accurate because it is ex-
tracted from fitting �log(E(b)) for small b). The signal attenuation
from such bilayer system is a weighted combination (shown by cir-
cles) of the two signal attenuations:

E ¼ ð1=4ÞEi þ ð3=4ÞEo;

where the weights 1/4 and 3/4 are volume fractions of the inner cyl-
inder and the outer cylindrical shell, respectively. The signal atten-
uation E as a function of b exhibits thus a bi-exponential decay, with
two different ADCs, in spite of the fact that water in both compart-
ments has the same diffusion coefficient D. In other words, the
smallness of both ADCs in comparison to D does not necessarily
mean a reduction of the microscopic mobility of water molecules.
It is uniquely a reflection of compartmentation. This example illus-
trates potential ambiguities of ADCs whose interpretation may be
strongly misleading, as it was already stressed [20,56]. When the
intermediate permeability is very small (W1 = 10�7 m/s), the signal
attenuation, shown by green dash-dotted line, is close to the limit-
ing case of W1 = 0.
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Fig. 4. Signal attenuation as a function of the b-value for restricted water diffusion
in cylindrical bilayer system, with r1 = 2.5 lm, r2 = 5 lm, D1 = D2 = 2 � 10�9 m2/s,
t = 100 ms, d = 50 ms, g = 0 � 200 mT/m. Dashed, solid and dash-dotted lines show
the signal attenuation for three values of the permeability W1 (infinity, 10�5 m/s
and 10�7 m/s, respectively). Two black dotted lines indicate the signal attenuation
Ei for the isolated cylinder of radius r1 and the signal attenuation Eo for the isolated
cylindrical shell of radii r1 and r2 (the latter curve decays much faster). As expected,
these two signals as functions of b exhibit monoexponential decay. Circles show the
weighted sum (1/4)Ei + (3/4)Eo which corresponds to the bilayer system with zero
permeability. Squares indicate the signal attenuation for W1 = 10�5 m/s computed
by Monte Carlo simulations.
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The curve shown by red solid line corresponds to typical water
permeability in axons, W1 = 10�5 m/s. Although this curve can also
be fitted as bi-exponential, the corresponding ADCs are affected by
the permeability. This feature should be taken into account for a
reliable interpretation of experimental data. In order to check the
validity of the matrix formalism, the signal attenuation was also
computed by Monte Carlo simulations. Since a classical scheme
was employed (see, e.g., [57]), its full description is omitted. We
only note that the finite permeability was implemented as a ran-
dom choice for reflection or transfer across the boundary, the
reflection probability being related to the permeability, diffusion
coefficient and discretization step [58]. Fig. 4 shows that the matrix
formalism and Monte Carlo simulations give similar results.
3.2. Different diffusion coefficients

As the second example, we consider a cylindrical bilayer system
with different diffusion coefficients D1 and D2, each of them is
equal either to D (free diffusion coefficient of water), or to D/10
(strongly hindered diffusion coefficient for water in gel or crowded
0 0.5 1 1.5 2 2.5
x 1011

10−4

10−3

10−2

10−1

100

E(
b)

/E
(0

)

b (in s/m2)

D1 = D
D1 = D/10

(a)

Fig. 5. Signal attenuation in two isolated compartments of the bilayer
environment). The other physical parameters remain the same as
in the previous subsection. Both diffusion lengths, 14 lm and
4.5 lm (for D and D/10, respectively) are larger than, or compara-
ble to, the compartment sizes.

For simple confining shapes, an increase of the diffusion coeffi-
cient leads to a weaker signal decay (i.e., a smaller ADC according
to Eq. (31)). This is a counter-intuitive feature of the motional aver-
aging or long-time regime [11]. During a long diffusive exploration,
the nuclei visit various regions of the confining domain and thus
experience almost all possible values of the gradient, and this mo-
tional averaging being stronger for larger diffusion coefficients.
Spatial heterogeneities of the magnetic field are therefore partly
averaged, and the signal is less attenuated. This behavior is clearly
seen on Fig. 5a in which the spin-echo signal attenuation is plotted
as a function of b for the isolated inner cylinder of radius
r1 = R/2 = 2.5 lm. In turn, the behavior of the spin-echo signal
attenuation for the isolated outer cylindrical shell is different. On
Fig. 5b, the signal is stronger attenuated for larger diffusion coeffi-
cient. This discrepancy can be explained by the fact that the nuclei
traveling along the circumferences of the cylindrical shell explore
distances in the order of 15 � 30 lm, and the long-time regime is
not yet established. The signal behavior in single circular and
spherical layers was thoroughly investigated in [39].

As expected, the signal attenuation in the whole multilayered
structure exhibits a complicated dependence on the gradient
strength and diffusion coefficient. Fig. 6 shows the signal attenua-
tion for four combinations of the diffusion coefficients D1 and D2,
when the intermediate boundary is impermeable (W1 = 0), par-
tially permeable (W1 = 10�5 m/s), and fully permeable (W1 =1).
In the former case, E = (1/4)Ei + (3/4)Eo, and the behavior of the sig-
nal attenuations Ei and Eo in the two isolated compartments sug-
gest to expect the strongest signal attenuation for D1 = D/10 and
D2 = D (green dashed curve), while the weakest signal attenuation
is expected for D1 = D and D2 = D/10 (red dash-dotted line). Two
other combinations, D1 = D2 = D and D1 = D2 = D/10, yield interme-
diate signal attenuations. This example illustrates how sophisti-
cated the behavior of the signal may be, even in the simplest
multilayered structure with no permeability. Further theoretical
analysis of the signal attenuation is necessary for a reliable fitting
and interpretation of experimental data.

For a typical value of water permeability in cells and axons
(W1 = 10�5 m/s), the signal behavior is similar to that for imper-
meable boundary. For this example, the permeability may be ne-
glected in order to lighten the analysis and fitting procedures.
However, the diffusive exchange through the intermediate bound-
ary may become crucial for other choices of physical parameters,
i.e., permeability, compartments sizes, diffusion coefficients,
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system: (a) the inner cylinder and (b) the outer cylindrical shell.
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Fig. 6. Signal attenuation in the cylindrical bilayer system with four combinations of diffusion coefficients D1 and D2, when the intermediate boundary is impermeable
(W1 = 0, a), partially permeable (W1 = 10�5 m/s, b), and fully permeable (W1 =1, c).
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observation time, etc. Using the matrix formalism, one can accu-
rately determine whether this exchange is relevant or not for a gi-
ven set of parameters.

When the permeability W1 is infinite, the behavior of the signal
is different. For instance, the case D1 = D and D2 = D/10 (red dash-
dotted line) which exhibited the weakest signal attenuation for
impermeable boundary, leads to the strongest attenuation for a
fully permeable boundary. Diffraction-like patterns [59] start to
appear for other cases. A detailed study of the signal behavior in
multilayered structures will be published elsewhere.

3.3. Modeling the extracellular space

A multilayered structure is often a part of a larger medium. For
instance, living cells or axons are immersed in the surrounding
extracellular space which can be considered as an infinite medium
as compared to the size of the multilayered structure. Water mol-
ecules or other species can diffuse across the outer boundary of the
multilayered structure into the extracellular space and back.

In a first approximation, the diffusive exchange with the extra-
cellular space is implemented in Eq. (1) through the permeability
W‘ of the outer boundary. This implementation assumes a one-
way exchange, namely, permeation from the multilayered struc-
ture to the extracellular space. In other words, any particle may
leave the multilayered structure, but no particle can enter (or re-
turn) inside it. This assumption can in principle be realized in
experiments in which the extracellular space is filled with strong
relaxation agents (e.g., Mn2+ ions). These agents are supposed to
ensure infinitely fast relaxation in the extracellular space so that
once a particle leaves the multilayered structure, its magnetization
is immediately destroyed. When two-way exchange is expected,
more elaborate models are needed.

A rigorous ‘‘connection” between the multilayered structure
and an infinite surrounding medium is a tedious task. In fact, if a
spectral approach was employed, the main difficulty would be
the emergence of a continuous part of the Laplace operator spec-
trum for the infinite medium. This problem was partly solved by
Barzykin et al. for a sphere immersed in the extracellular space
[48]. Using the narrow-pulse approximation, they computed the
signal attenuation in the long-time regime when the continuous
part of the spectrum can be neglected.

We propose another, more physics-oriented approach. In MRI
experiments, the excitation of the nuclei and the signal acquisition
are performed inside a voxel which often englobes a biological sys-
tem (e.g., a living cell) and a part of the surrounding extracellular
space. For the sake of simplicity, we assume that the voxel has a
rotation-invariant shape of radius R (in principle, any voxel shape
could be implemented, although the computation would be more
sophisticated). The nuclei, which were excited inside the voxel,
can leave it and possibly return before the observation time. What
is an appropriate boundary condition at the edge of the voxel?
Neumann boundary condition would prohibit the nuclei to leave
the voxel, while Dirichlet boundary condition does not allow them
to return. An intermediate Robin boundary condition might work,
although there is no physical frontier around the voxel, and the
choice of the permeability at this fictitious frontier is problematic.
To overcome this difficulty, we propose to introduce a supplemen-
tary layer around the voxel. The width of this layer can be chosen
to be around 2

ffiffiffiffiffiffi
Dt
p

;D being the water diffusion coefficient in the
extracellular space. In this case, the water molecules which left
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the voxel, do not have enough time to cross the supplementary
layer and to arrive towards its boundary. As a consequence, the
presence of this fictitious boundary and its boundary condition
do not influence the signal attenuation.

In order to clarify this idea, we consider a spherical cell of radius
r1 = 1 lm immersed in the extracellular space. For our illustrative
purposes, the diffusion coefficients inside and outside the cell are
taken to be that of free water at ambient temperature: D = 2 �
10�9 m2/s. We assume that the voxel size r2 is 5 lm so that our sys-
tem is originally a spherical bilayer structure. The permeability W1

of the cellular membrane is 10�5 m/s. During the observation time
t of 10 ms, the water protons travel on average distances aroundffiffiffiffiffiffi

Dt
p

� 4:47 lm. In order to calculate the signal from this system,
we introduce a supplementary layer of width r. The permeability
W2 between the voxel and this layer is infinite because this virtual
frontier goes across the same extracellular space. Finally, the per-
meability W3 at the outer boundary of the supplementary layer
is set to 0 (reflecting condition), although this value is irrelevant
for computation. From a numerical point of view, one deals now
with a spherical three-layered structure: the inner layer represents
the cell, while the second and third layers represent the extracellu-
lar space.

Taking different values for r, one can determine when the sig-
nal attenuation becomes independent of r. As a benchmark, we
consider the computation of the signal attenuation with
r = 25 lm which is approximately 5 times larger than the diffusion
length

ffiffiffiffiffiffi
Dt
p

. Fig. 7a shows the relative error of the signal attenua-
tions for various r, as compared to the reference signal attenuation
(with r = 25 lm). Even for r = 5 lm, the maximal relative error is
below 1%. The use of r = 10 lm (which is approximately twice
the diffusion length) gives very accurate results. Fig. 7a confirms
that the presence of the fictitious boundary of the supplementary
layer does not influence the signal attenuation inside the voxel.

Several technical comments are in order.

� The initial density q(r) and the sampling function ~qðrÞ are not
uniform. In fact, we assumed that the nuclei are excited within
the first two layers, i.e., qðrÞ ¼ IX0 ðrÞ=V0, where X0 = X1 [X2,V0

is the volume of these two layers X1 and X2, and IAðrÞ is the
indicator function: IAðrÞ ¼ 1 if r 2 A, and 0 otherwise. Similarly,
the signal is formed by the nuclei which are located inside X0 at
time t, i.e., ~qðrÞ ¼ IX0 ðrÞ. The elements of the vectors U and eU
have to be recomputed. For this purpose, one can still use
Eq. (A.2) from Appendix A but the summation should go up
to ‘ � 1 instead of ‘ because the supplementary layer ‘ is
excluded.
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Fig. 7. Modeling the extracellular space. (a) The relative error of the signal for different
extracellular space. (b) Accurate computation of the signal attenuation and its approxim
� When q(r) and ~qðrÞ were uniform and the outer boundaries
were reflecting, the signal attenuation was normalized as
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ations.
Eðg ¼ 0Þ ¼ ðUe�Kt eUÞ ¼ 1:
This normalization does not hold in the non-uniform case. In fact,
E(g = 0) is smaller than 1 because the nuclei which were excited in-
side the first two layers, can leave this domain and thus diminish
contributions to the signal. This ‘‘leakage” happens independently
of the gradient strength. As a consequence, it is convenient to ren-
ormalize the signal by E(g = 0), as one does in experiment when the
signal is normalized by the reference signal. All the signal attenua-
tions shown in Fig. 7 are normalized in this way.

As we mentioned at the beginning of this section, the perme-
ability W‘ of the outer boundary was often used in order to account
for one-way exchange with the extracellular space. It is instructive
to compare the results for one-way and two-way exchanges.
Fig. 7b shows the normalized signals from the above spherical bi-
layer structure. Blue solid curve shows the signal attenuation for
two-way exchange which is obtained by our approach with the
supplementary layer of width r = 25 lm. This curve is referred to
as the exact result. The dashed and dash-dotted lines present the
signal attenuation for one-way exchange which is obtained by con-
sidering either fully reflecting (W2 = 0), or fully absorbing (W2 =1)
outer boundary. One of these curves underestimates the signal
attenuation, while the other overestimates it. Both approximations
are inadequate. The last curve shown by circles was obtained man-
ually by adjusting the permeability W2 in order to get the closest
representation of the solid line. Note that the optimal value
W2 = 1.6 � 10�3 m/s is too large for biological systems. We recall
that the outer boundary of radius r2 is a virtual frontier of the voxel
that crosses the extracellular space. In other words, this optimal
permeability does not have a physical meaning, it is just an effec-
tive value for getting the right result by using the wrong model. In
turn, the introduction of a supplementary layer is a rigorous way to
account for two-way exchange.

It is worth noting that the spectral approach developed in this
paper is limited for studying a single multilayered structure. In prac-
tice, however, many copies of the same structure may be present.
For instance, many living cells or axons are simultaneously present
in the extracellular space. If these structures are close to each other,
diffusive exchange between them may be relevant, and the present
approach is not valid. If, on the opposite, these structures are
relatively sparse so that the diffusive exchange between them can
be neglected, the spectral approach can be applied.
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r of the supplementary layer which is added for modeling diffusion in the
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Fig. 8. Signal attenuation of water protons in a slab of width R = 10 lm (a) and R = 5 lm (b), with D = 2 � 10�9 m2/s, t = 50 ms, and three values of the gradient duration d. Lines
show the signal attenuation computed by the matrix formalism, while symbols represent the NPA from Eq. (32): circles for d = 1 ms, squares for d = 3 ms, and triangles for
d = 5 ms.
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3.4. Narrow-pulse approximation

Many theoretical studies of the spin-echo signal attenuation re-
lies on the narrow-pulse approximation (NPA) [60–63]. When the
duration d of the gradient pulses is short enough so that the motion
of the nuclei during the time d can be neglected, the signal atten-
uation can be approximated as

ENPA ¼
Z

X
dr0qðr0Þ

Z
X

dr e2piðq�r0ÞGtðr0; rÞe�2piðq�rÞ;

where q = cgde/(2p), and Gt(r0,r) is the diffusive propagator describ-
ing the probability for a nucleus to move from r0 to r in time t (sub-
ject to appropriate boundary conditions). This relation states that
the first gradient pulse (represented by e2piðq�r0Þ) at time 0 ‘‘encodes”
the positions of the nuclei, while the second gradient pulse (repre-
sented by e�2pi(q�r)) at time t allows to compare the actual position r
to the initial position r0. The NPA becomes exact in the limit d ? 0
and g ?1 keeping q constant.

Assuming the uniform initial density q(r0) = 1/Vol and using the
spectral decomposition of the propagator on the basis of the La-
place operator eigenfunctions [11], one obtains

ENPA ¼
X

m

Vme�kmtV�m ¼ ðVe�tKV�Þ; ð32Þ

where

Vm ¼ Vol�1=2
Z

X
dr e2piðq�rÞumðrÞ: ð33Þ

In Appendix A, the explicit formulas for the coefficients Vm are
given in the case of multilayered structures. These formulas allow
one for a rapid computation of the approximate signal attenuation
ENPA.

The narrow-pulse approximation is generally accepted as a reli-
able theoretical description of the spin-echo signal. However, the
assumption of immobility of the nuclei during the gradient pulses
is often not valid (see the review [11] and other references, e.g.,
[64,65]). This is particularly true for biological systems in which
geometrical restrictions are in the order of microns. In order to
illustrate this discrepancy, we compute the signal attenuation of
water protons in a slab of width either R = 10 lm, or R = 5 lm
(Fig. 8), by using the matrix formalism and the NPA. The gradient
duration d is varied between 1 ms and 5 ms, while the observation
time t is set to 50 ms (the results are similar for t = 20 ms). For the
shortest gradient duration d = 1 ms, the NPA (shown by circles) is
rather accurate in both cases. For R = 5 lm, the signal remains al-
most unattenuated, E(g = 1 T/m)/E(0) � 0.89, so that an accurate
characterization of the system is problematic. In order to overcome
this difficulty, one can increase either the gradient strength, or the
gradient duration. When d = 3 ms or 5 ms (squares and triangles,
respectively), the NPA is still acceptable for R = 10 lm, although
systematic deviations can already be observed. In turn, the NPA
strongly overestimates the signal attenuation for R = 5 lm which
is closer to the size of biological systems. For still smaller compart-
ments (e.g., R = 2 lm, not shown), the NPA predictions are
unacceptable.

Why does the NPA fail for small compartments? Although dis-
placements of the nuclei during the gradient pulses,ffiffiffiffiffiffi

Dd
p

� 2:4 ls (for d = 3 ms), are small in comparison to those dur-
ing the observation time,

ffiffiffiffiffiffi
Dt
p

� 10 ls, displacements in both cases
are comparable to the compartment size R. The motional averaging
leads therefore to a reduced ‘‘encoding strength” of the gradient
pulses and, consequently, to less attenuated signals. The conditionffiffiffiffiffiffi

Dd
p

� R, which turns out to be necessary for the applicability of
the NPA, is restrictive for many biological systems.

4. Conclusion

Restricted diffusion was studied in several multilayered struc-
tures such as multiple slabs, cylindrical or spherical shells. Each
layer could be characterized by its diffusion coefficient and bulk
relaxation time, while the interlayer boundaries could be charac-
terized by permeabilities. A new numerical algorithm for comput-
ing the signal attenuation due to linear magnetic field gradient and
bulk relaxation was developed. This algorithm relied on the repre-
sentation of the Bloch–Torrey equation on the explicitly known ba-
sis of the Laplace operator eigenfunctions. The spin-echo signal
attenuation was written in a compact matrix form which was par-
ticularly suitable for numerical computations. The elements of the
governing matrices were expressed in terms of the positive roots of
explicit functions. A solution of the original sophisticated problem
was therefore completely reduced to finding these roots. For rota-
tion-invariant multilayered structures, the new matrix method
was shown to be much more efficient, rapid and accurate than
classical numerical techniques such as Monte Carlo simulations
or finite-difference schemes. As an illustration of this method,
the role of permeability of the intermediate boundary was investi-
gated. The matrix formalism was implemented in Matlab, and the
code is available on request. This code can be applied for studying
restricted diffusion in biological systems, e.g., living cells (with
three spherical shells representing a nucleus, a cytoplasm and an
extracellular space), axons (with cylindrical shells) or composite
tissues (with parallel slabs for each tissue component).
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Appendix A. Computation of the integrals

The computation of the vectors U; eU and matrices B;Br for mul-
tilayered structures relies on several integrals involving the solu-
tions of Eq. (9). As first shown in [11], these integrals can be
computed explicitly. This is the key point for the efficiency of the
spectral technique. In this Appendix, we summarize the analytical
formulas for these integrals and describe the main steps of their
derivation, following the ideas in [39].

Eq. (9) for the radial dependence v(r) of a Laplace operator
eigenfunction is

ðrd�1v 0Þ0 þ ðlrd�1 � mrd�3Þv ¼ 0; ðA:1Þ

where l is related to the eigenvalue of the Laplace operator, while m
is the eigenvalue of the corresponding Laplace–Beltrami operator
(the angular part): m = 0 (d = 1), m = n2 (d = 2), and m = n(n + 1) (d = 3).

A.1. Vector U for the uniform density

When the initial density q(r) is uniform, the integral in Eq. (20)
is split in radial and angular parts, the latter giving dn,0 because of
the rotation invariance. The radial integral

Jk 

1

Rd � rd
0

Z R

r0

dr rd�1v0kðrÞ

can be separately evaluated on each layer. In fact, the integration of
Eq. (A.1) with m = 0 over any interval [a,b] yieldsZ b

a
drrd�1v ¼ � 1

l
rd�1v 0
� �b

a;

where ½f ðrÞ�ba denotes the difference f(b) � f(a). Applying this for-
mula for each layer, one finds

Jk ¼ �
1

k0kðRd � rd
0Þ

X‘
i¼1

Di rd�1
i v 0iþ1ðriÞ � rd�1

i�1 v 0iþ1ðri�1Þ
� �

¼ � 1

k0kðRd � rd
0Þ

D‘R
d�1v 00kðRÞ � D1rd�1

0 v 00kðr0Þ
h i

¼ 1

k0kðRd � rd
0Þ

W ‘R
d�1v0kðRÞ þW0rd�1

0 v0kðr0Þ
h i

: ðA:2Þ

The second equality relies on the boundary conditions on the
intermediate frontiers, while the last equality is based on boundary
conditions on the inner and outer frontiers. Note that this relation
is independent of the permeabilities Wi of the intermediate bound-
aries. In particular, when the inner and outer frontiers are fully
reflecting (W0 = W‘ = 0), one gets Jk = 0 (for k > 0), and Unk = dn,0dk,0.

If k00 = 0, the ground eigenfunction is constant, v00(r) = 1, so that
J0 = 1/d.

A.2. Normalization constants and relaxation matrix

The elements of the relaxation matrices Bi involve the radial
integrals

Inkk0 ;i 

1

Rd � rd
0

Z ri

ri�1

dr rd�1vnkðrÞvnk0 ðrÞ:
The same type of integrals appears in the normalization con-
stants bnk:

b�2
nk ¼

2

Rd � rd
0

Z R

r0

dr rd�1½vnkðrÞ�2 ¼ 2
X‘
i¼1

Inkk;i 
 2Ink: ðA:3Þ

For the sake of simplicity, let us denote the functions vnk(r) and
vnk0 ðrÞ as v1 and v2.

When k – k
0
,v1 and v2 are two solutions of Eq. (A.1) with differ-

ent l1, l2, and the integration by parts yields

ðl1 � l2Þ
Z b

a
dr rd�1v1v2 ¼ ðm1 � m2Þ

Z b

a
dr rd�3v1v2

� rd�1ðv 01v2 � v1v 02Þ
� �b

a:

Since m1 = m2 (the same n for vnk and vnk0 ), the first term in the
right-hand side is zero, andZ b

a
dr rd�1v1v2 ¼

1
l2 � l1

rd�1ðv 01v2 � v1v 02Þ
� �b

a: ðA:4Þ

As a consequence, one finds

Inkk0 ;i ¼
1

Rd � rd
0

Inkk0 ;iðriÞ � Inkk0 ;iðri�1Þ
� �

;

where the function Inkk0 ;iðrÞ is

Inkk0 ;iðrÞ ¼
Dird�1

knk0 � knk
v 0nk;iðrÞvnk0 ;iðrÞ � v 0nk0 ;iðrÞvnk;iðrÞ
h i

ðk – k0Þ:

When k = k
0
, two integrations by parts are required for comput-

ing the integrals Inkk,i. On one hand, multiplication of Eq. (A.1) by v
and integration yield

rd�1vv 0
� �b

a þ l
Z b

a
dr rd�1v2 ¼

Z b

a
dr rd�1ðv 0Þ2 þ m

Z b

a
dr rd�3v2:

On the other hand, multiplication of the same Eq. (A.1) by rv
0

and integration give

0 ¼ rdðv 0Þ2 þ lrdv2 � mrd�2v2
h ib

a
� ld

Z b

a
dr rd�1v2

þ ðd� 2Þ
Z b

a
dr rd�1ðv 0Þ2 þ m

Z b

a
dr rd�3v2

" #
;

from whichZ b

a
dr rd�1v2 ¼ 1

2l
rdðv 0Þ2 þ lrdv2 � mrd�2v2 þ ðd� 2Þrd�1vv 0
h ib

a
:

As a consequence,

Inkk;iðrÞ ¼
1

2knk
Dird½v 0nk;iðrÞ�

2 þ ðknkrd � Dird�2mnÞ½vnk;iðrÞ�2
h

þ ðd� 2ÞDird�1v 0nk;iðrÞvnk;iðrÞ
i
:

Finally, if k00 = 0, the ground eigenfunction is constant,
v00(r) = 1, from which I000,i(r) = rd/d.

A.3. Matrix B for a linear gradient

The computation of the matrix B for a linear gradient involves
the following integrals

Knk;n0k0 

1

LðRd � rd
0Þ

Z R

r0

dr rdvnkðrÞvn0k0 ðrÞ;

where L is the size of the multilayered structure (by convention,
L = R-r0 for d = 1, and L = R for d > 1).
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The computation relies on the same principles as earlier,
although it is technically more difficult. We present only the main
steps of computation.

For two solutions v1 and v2 of Eq. (A.1) with different l1, l2 and
m1, m2, let us define

K ¼ ðl1 � l2Þ
2
Z b

a
dr rd�1þkv1v2;

where k is an integer (k = 1 for a linear gradient). The basic idea is to
express rd�1livi by using Eq. (A.1) and then integrate by parts in or-
der to ‘‘remove” derivatives. The first application of this idea yields

K ¼ ðl1 � l2Þ rd�1þkðv1v 02 � v 01v2Þ
� �b

a þ ðm1 � m2Þ
Z b

a
dr rd�3þkv1v2

(

þ k
Z b

a
dr rd�2þkðv 01v2 � v1v 02Þ

)
:

After that, the factor (l1 � l2) is again used to express rd�1livi

according to Eq. (A.1) in the remaining integrals. Skipping technical
details, we get

K ¼ ðl1 � l2Þrd�1þkðv1v 02 � v 01v2Þ þ kðl1 þ l2Þrd�2þkv1v2
�
� ðm1 � m2 � kðd� 2þ kÞÞrd�3þkv 01v2

� ðm2 � m1 � kðd� 2þ kÞÞrd�3þkv1v 02

� k m1 þ m2 þ ðk� 2Þðd� 2þ kÞ½ �rd�4þkv1v2 þ 2krd�2þkv 01v
0
2

ib

a

þ ðm1 � m2Þ2 þ kðk� 2Þðd� 2þ kÞðd� 4þ kÞ � 2kðm1 þ m2Þ
h i

�
Z b

a
dr rd�5þkv1v2 þ 2ðm1 � m2Þðk� 1Þ

Z b

a
dr rd�4þkv 01v2

þ 2ðm2 � m1Þðk� 1Þ
Z b

a
dr rd�4þkv1v 02 � 4kðk� 1Þ

Z b

a
dr rd�3þkv 01v 02:

ðA:5Þ

This formula was derived for d = 2 in [39]. In the particular case
of k = 1 (linear gradient), the above expression is reduced to

K ¼ ðl1 � l2Þrdðv1v 02 � v 01v2Þ þ ðl1 þ l2Þrd�1v1v2
�
� ðm1 � m2 � ðd� 1ÞÞrd�2v 01v2 � ðm2 � m1 � ðd� 1ÞÞrd�2v1v 02

þ 2rd�1v 01v
0
2 � ðm1 þ m2 � ðd� 1ÞÞrd�3v1v2

�b

a

þ ðm1 � m2Þ2 � ðd� 1Þðd� 3Þ � 2ðm1 þ m2Þ
h i Z b

a
dr rd�4v1v2:

ðA:6Þ

In addition to explicit terms, this formula contains the integral
which is unknown. However, the prefactor in front of this integral
turns out to be 0 for the relevant cases:

� For d = 1,m1 = m2 = 0 so that the last term in Eq. (A.6) vanishes.
� For d = 2, one has m1 ¼ n2

1; m2 ¼ n2
2, where n1 and n2 are integer.

Since the angular integral in Eq. (19) implies jn1 � n2j = 1, the
prefactor in front of the last term in Eq. (A.6) is
ðn1 þ n2Þ2 � 2ðn2

1 þ n2
2Þ þ 1 ¼ 0.

� For d = 3, one has m1 = n1(n1 + 1),m2 = n2(n2 + 1) and jn1 � n2j = 1,
from which the last term vanishes.

As a result, we obtain for n = n
0
± 1 (d > 1) or k – k

0
(d = 1),

Knk;n0k0 ¼
1

ðknk � kn0k0 Þ
2LðRd � rd

0Þ

X‘
i¼1

Knk;n0k0 ;iðriÞ � Knk;n0k0 ;iðri�1Þ
� �

;

where

Knk;n0k0 ;iðrÞ ¼ Diðknk þ kn0k0 Þrd�1 � D2
i ðmn þ mn0 � ðd� 1ÞÞrd�3

h i
vnk;iðrÞvn0k0 ;iðrÞ

þ Diðkn0k0 � knkÞrd � D2
i ðmn � mn0 � ðd� 1ÞÞrd�2

h i
v 0nk;iðrÞvn0k0 ;iðrÞ

þ Diðknk � kn0k0 Þrd � D2
i ðmn0 � mn � ðd� 1ÞÞrd�2

h i
vnk;iðrÞv 0n0k0 ;iðrÞ

þ 2D2
i rd�1v 0nk;iðrÞv 0n0k0 ;iðrÞ:

In the one-dimensional case (d = 1), there is no condition
jn1 � n2j = 1, and one needs to compute the diagonal elements of
the matrix B. In this case, Eq. (A.1) is simply v00 + lv = 0. On one
hand, multiplication of this equation by rv and integration yield

l
Z b

a
dr rv2 �

Z b

a
dr rðv 0Þ2 ¼ v2=2� rvv 0

� �b

a:

On the other hand, its multiplication by r2v0 and integration give

l
Z b

a
dr rv2 þ

Z b

a
dr rðv 0Þ2 ¼ r2ðv 0Þ2=2þ lr2v2=2

h ib

a
;

from whichZ b

a
dr rv2 ¼ 1

2l
r2ðv 0Þ2=2þ lr2v2=2þ v2=2� rvv 0
h ib

a
:

As a result, one finds for d = 1

K0k;0k ¼
1

LðR� r0Þ

Z R

r0

dr rv2
0kðrÞ

¼ 1
4k0kLðR� r0Þ

X‘
i¼1

K0k;0k;iðriÞ � K0k;0k;iðri�1Þ
� �

K0k;0k;iðrÞ ¼ Dir2½v 00kðrÞ�
2 þ ðk0kr2 þ DiÞ½v0kðrÞ�2 � 2Dirv0kðrÞv 00kðrÞ:

Finally, when d = 1 and k00 = 0, one gets K00,00 = (R+r0)/(2L).

A.4. Coefficients for the narrow-pulse approximation

The coefficients in Eq. (32) can be computed exactly in the case
of the multilayered structures. We consider three cases d = 1, d = 2
and d = 3 separately. In this Appendix, we replace 2pq by q to light-
en expressions.

In one dimension, the coefficients are

V0k ¼
ffiffiffi
2
p

b0k

R� r0

Z R

r0

dr eiqrv0kðrÞ:

Since both functions eiqr and v0k(r) satisfy the differential Eq.
(A.1), Eq. (A.4) yields

V0k ¼
ffiffiffi
2
p

b0k

X‘
i¼1

V0k;iðriÞ � V0k;iðri�1Þ
� �

;

where

V0k;iðrÞ ¼
1

ðq2 � knk=DiÞðR� r0Þ
v 00k;iðrÞeiqr � v0k;iðrÞðiqeiqrÞ
h i

:

In two and three dimensions, one has

Vnk ¼
enbnk

pðR2 � r2
0Þ

Z R

r0

dr rvnkðrÞ
Z 2p

0
dh cos nheiqr cos h

¼ 2enbnkin

R2 � r2
0

Z R

r0

dr rvnkðrÞJnðqrÞ ðd ¼ 2Þ;

Vnk ¼
ffiffiffiffiffiffiffiffi
3=2

p
bnk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p

R3 � r3
0

Z R

r0

dr r2vnkðrÞ
Z p

0
dh sin hPnðcos hÞeiqr cos h

¼
ffiffiffi
6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

bnkin 1
R3 � r3

0

Z R

r0

dr r2vnkðrÞjnðqrÞ ðd ¼ 3Þ:
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Using again Eq. (A.4), one finds the general explicit formula for
the coefficients Vnk for d = 1,2,3:

Vnk ¼ bnk

X‘
i¼1

½Vnk;iðriÞ � Vnk;iðri�1Þ�; ðA:7Þ

where

Vnk;iðrÞ ¼
rd�1

ðq2 � knk=DiÞðRd � rd
0Þ

v 0nk;iðrÞv̂nðqrÞ � vnk;iðrÞqv̂ 0nðqrÞ
h i

;

ðA:8Þ

and

v̂nðzÞ ¼

ffiffiffi
2
p

eiz ðd ¼ 1Þ;
2eninJnðzÞ ðd ¼ 2Þ;ffiffiffi

6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

injnðzÞ ðd ¼ 3Þ:

8><>: ðA:9Þ
K ¼

0 0 0 0 0 0 0 0 0 0

0 14:681 0 0 0 0 0 0 0 0

0 0 57:511 0 0 0 0 0 0 0

0 0 0 125:311 0 0 0 0 0 0

0 0 0 0 214:264 0 0 0 0 0

0 0 0 0 0 321:452 0 0 0 0

0 0 0 0 0 0 326:980 0 0 0

0 0 0 0 0 0 0 344:788 0 0

0 0 0 0 0 0 0 0 399:041 0

0 0 0 0 0 0 0 0 0 445:470

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

B ¼

0 0:5517 0 0 0 0 0 �0:0895 0 0

0:5517 0 0:3944 0 0 0 �0:1085 0 �0:0498 0

0 0:3944 0 0:4024 0 0 0 �0:0881 0 0

0 0 0:4024 0 0:4125 0 0 0 �0:0951 0

0 0 0 0:4125 0 0:4228 0 0 0 0

0 0 0 0 0:4228 0 0 0 0 0:4317

0 �0:1085 0 0 0 0 0 0:5176 0 0

�0:0895 0 �0:0881 0 0 0 0:5176 0 0:3620 0

0 �0:0498 0 �0:0951 0 0 0 0:3620 0 0

0 0 0 0 0 0:4317 0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCA

ðB:1Þ
These formulas extend the classical results for a slab, a cylinder
and a sphere [60,66–69].
Appendix B. Example of the matrices

As an illustration for the use of the matrix formalism, Eq. (B.1)
gives explicitly the truncated matrices K and B of size 10 � 10
which allow one to draw the curves on Fig. 5b for the outer cylin-
drical shell of radii r1 = 2.5 lm and r2 = 5 lm with reflecting
boundaries (note that Um ¼ eUm ¼ dm;0). Fig. 5b illustrates two
choices of the diffusion coefficient: D = 2 � 10�9 m2/s (blue solid
line) and D = 2 � 10�10 m2/s (green dashed line). For a single-layer
structure, the matrix B is independent of D, while the matrix K
is proportional to D. The matrix K in Eq. (B.1) corresponds to the
green dashed line, while the matrix 10K corresponds to the blue
solid line.
Although the curves on Fig. 5b were plotted by using the
matrices of size 100 � 100, the truncation to the size 10 � 10
shown here yields the green dashed line within relative errors less
than 1% for the whole range of the b-value shown on Fig. 5b.
Moreover, the truncation to the size 3 � 3 gives the same accu-
racy for the blue solid curve! This seemingly striking result has
a simple explanation. Since the matrix B is a kind of perturbation
of the matrix K, the truncation error is related to the ‘‘smallness”
of xB in comparison to K. For the blue solid curve, the largest
eigenvalue of the corresponding matrix 10K truncated to the size
3 � 3 is 575.11. This value is in the same order as the largest
eigenvalue 445.47 of the matrix K truncated to the size 10 � 10
for the green dashed line, yielding thus similar accuracy. In gen-
eral, smaller matrices are needed for computing the signal atten-
uation for faster diffusion.
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